An Extension of the Talbot–Ogden Hydrology Model to an Affine Multi-dimensional Moisture Content Domain
نویسندگان
چکیده
The Talbot–Ogden hydrology model provides a fast mass conservative method to compute infiltration in unsaturated soils. As a replacement for a model based on Richards equation, it separates the groundwater movement into infiltration and redistribution for every time step. The typical feature making this method fast is the discretization of the moisture content domain rather than the spatial one. The Talbot-Ogden model rapidly determines how well ground water and aquifers are recharged only. Hence, it differs from models based on advanced reservoir modeling that are uniformly far more expensive computationally since they determine where the water moves in space instead, a completely different and more complex problem. According to the pore-size distribution curve for many soils, this paper extends the one dimensional moisture content domain into a two dimensional one by keeping the vertical spatial axis. The proposed extension can describe any pore-size or porosity distribution as an important soil feature. Based on this extension, infiltration and redistribution are restudied. The unconditional conservation of mass in the Talbot–Ogden model is inherited in this extended model. A numerical example is given for the extended model.
منابع مشابه
A New Application of Dynamic Data Driven System in the Talbot-Ogden Model for Groundwater Infiltration
The Talbot Ogden model is a mass conservative method to simulate flow of a wetting liquid in variably-saturated porous media. The principal feature of this model is the discretization of the moisture content domain into bins. This paper gives an analysis of the relationship between the number of bins and the computed flux. Under the circumstances of discrete bins and discontinuous wetting front...
متن کاملStructural Mechanics Approach to Investigate the Hyperelastic Mechanical Behavior of Single and Multi-wall Carbon Nanotubes
In the current research, a three-dimensional finite element model was considered to predict the mechanical behavior of Single Wall (SWCNTs) and Multi Wall Carbon Nanotubes (MWCNTs). Assuming the nonlinear elastic behavior of C-C bond in large strains, hyperelastic models were considered. Literature review revealed that the material parameters of the hyperelastic models have been determined from...
متن کاملAn Analysis of Achievement of the Philosophical Sense of “Extension” in Music, with Interpretaion of Ibn-e Sina’s Explanation an Extension
This research can be considered as one of the studies that seek to explore, in an argumentative way, subtle and solid philosophical concepts in the field of art. The paper provides an analysis of the concept of “extension” in music as one of the most thought-provoking philosophical concepts. The analysis is carried out by interpreting Ibn-Sina’s special conception of musical extension to answer...
متن کاملAn Analytical Model for Flame Propagation through Moist Lycopodium Particles with Non-unity Lewis Number
In this investigation, the structure of one-dimensional flame propagation in uniform cloud of volatile organic particles has been analyzed in which the structure of flame is divided into three zones. The first zone is preheat zone which is divided into three subzones itself. In first subzone (heating), particle cloud heated until the moisty particles reach to vapor vaporization temperature. In ...
متن کاملAcetylation of wood – A review
Wood is a porous three dimensional, hydroscopic, viscoelastic, anisotropic bio-polymer composite composed of an interconnecting matrix of cellulose, hemicelluloses and lignin with minor amounts of inorganic elements and organic extractives. Some, but not all, of the cell wall polymer hydroxyl groups are accessible to moisture and these accessible hydroxyls form hydrogen bonds with water. As the...
متن کامل